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Adjoint-Based Aerodynamic Shape Optimization Using the Drag
Decomposition Method (François Bisson)

Key Features

- Phenological breakdown of drag

- Reduce mesh dependancy

- Understand the sensitivity of the design variable for each
drag component for the full flight envelope

- Potential application to non-planar wings design

DPW-W1 at M = 0.76 and CL = 0.500 for fine grid (inviscid)

Mid-Field Drag Decomposition

Simplified control volume for the mid-field method

(Courtesy [Kusunose et al.,2002])
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• 1st term related to entropy generation processes (shock
waves and viscous/artificial dissipations)

• 2nd term is the Maskell’s induced drag
ζ - x-vorticity & ψ - stream function (∇2ψ = −ζ)
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Induced Drag Minimization - DPW-W1 Wing (François Bisson)
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Pressure distribution for DPW-W1 wing induced drag minimization

Fully subsonic (M = 0.60)
Lift Constrained (CL = 0.40)
Local surface parametrization

→ Camber optimized to approach elliptical
loading

→ 3.43% Induced Drag Reduction
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Sensitivity-Based Sequential Sampling for Surrogate Models (Arthur

Paul-Dubois-Taine)

Motivation

- Aircraft design involves a large number of parameters.

- High fidelity CFD results remain expensive at a conceptual design
stage.

- Surrogate models→ use existing flow solutions to approximate
continuous response surface
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Question: what criteria do we use to decide on new
snapshot locations?

Existing error criteria:

• Mean Square Error (MSE) estimate built in
Kriging

• Cross Validation (CV)

• More accurate than MSE
• Computationally expensive

• ⇒ Objective: find low cost alternative

to CV

New approach: Sensivity analysis (S)

• Uses the mathematical form of Kriging model

• Incorporates gradient information in the
sampling process
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Sensitivity-Based Sequential Sampling for Surrogate Models (Arthur

Paul-Dubois-Taine)
Pressure distribution for DPW-W1 at various camber, thickness, and α
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→ Three parameters: Camber, Thickness ratio
and Angle of Attack α

→ M∞ = .81, Camber Location = 40%.
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Aerodynamic Optimization of Natural Laminar Flow (NLF) Airfoils

NLF(1)-0416: Minimizing total drag at constant lift, Ma=0.1, Re =2.0 million
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Pressure distribution

• Improvements to γ−Reθ model:
• Khayatzadeh, P and Nadarajah, S, ”Laminar-Turbulent Flow Simulation for Wind

Turbine Profiles Using the γ−Reθ Transition Model”, Wind Energy (2013), (In-press)

• Developed Adjoint counterpart for γ−Reθ model.
• Khayatzadeh, P and Nadarajah, S, ”Aerodynamic Shape Optimization of Natural

Laminar Flow (NLF) Airfoils”, 50th AIAA Aerospace Sciences Meeting (2011)
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Constrained Aero Optimization for Multistage Turbomachinery
(Benjamin Walther)

2.5-stage transonic compressor. Total pressure ratio: π = 3.0

Mrel, baseline design First adjoint variable ψ1− contours

Walther, B and Nadarajah, S, Constrained Adjoint-Based Aerodynamic Shape Optimization of a
Transonic Compressor Stage, ASME Journal of Turbomachinery April, 2013.

Walther, B and Nadarajah, S, Constrained Adjoint-Based Aerodynamic Shape Optimization in a
Multistage Turbomachinery Environment, AIAA ASM 2012 January, 2012.

Contributions

1. Effect of constraint violation on the performance of the compressor stage.

2. High-lift airfoil design → reduced number of blades/stages

3. Unsteady multistage optimization → rotor-stator interactions using Non-Linear Frequency
Domain schemes.
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Design Optimization to Alleviate Gust Response and Flutter
(Ali Mosahebi)

Fast Implicit Adaptive Time Spectral Schemes[
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Kachra, F and Nadarajah, S, Aeroelastic Solutions Using the Non-Linear Frequency Domain
Method, AIAA Journal, 46(9), September 2008. Mosahebi, A and Nadarajah, S, ”An Adaptive

NonLinear Frequency Domain Method for Viscous Flows”, Computers and Fluids, Elsevier (In
Press)
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Next-Generation of Algorithms for Aerodynamic Design Optimization

Future

• Potential increase in computing power. Greater parallelism.

• High-order methods.

• Novel approaches to explore the design space. (Multimodality)

• Evaluate sensitivity of design variables on aerodynamic performance for off-design
certification cases and include it within the design loop.

• Higher geometric detail during the optimization.

• Quantify uncertainty.

• Evaluating the Hessian.
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Current Status of Goal-Oriented Mesh Adaptation (J-S. Cagnone)

Adaptation based on Lift Adaptation based on Drag

Current State-of-the-Art

• Wide variety of phenomenon / scale lengths

• Reliable CFD requires a-priori knowledge of the flow

• Meshing best practices may be insufficient in some cases...
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Current Status of Goal-Oriented Mesh Adaptation (J-S. Cagnone)

• Adjoint provides sensitivity of scalar quantity of interest
• Formally J (u) =

∫
Γ p(u)ds

• In practice, interested in Cl, Cd or Cm

• Can be used to guide mesh refinement

• Theory well understood
• FEM: Becker & Rannacher (1996,1998)
• FV: Venditti & Darmofal (2002,2003)
• DG: Houston & Hartmann (2001,2002)

Fidkowski & Darmofal (2007)

Some limitations

• What if there is no obvious output?

• What if interested in actual 3D flow field?

• What if interested in a pressure distribution?
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Current Status of Goal-Oriented Mesh Adaptation (J-S. Cagnone)

Adaptation based on Lift Adaptation based on Drag

• Current approaches ask, ”What is the error in the integrated functional?”

• Perhaps we should ask, ”What is the integral of the error on the surface or
volume?”
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Current Status of Goal-Oriented Mesh Adaptation (J-S. Cagnone)

Adaptation based on Lift (left) and Drag (right)

Our Contribution

• Developed a new p-adaptive differential-form of the DG Scheme (Based on HT
Huynh and ZJ Wang’s CPR formulation).

1. Cagnone, JS and Nadarajah, S, A Stable Interface Element Scheme for the p-Adaptive
Lifting Collocation Penalty Formulation, Journal of Computational Physics, 231(4),
February, 2012.

2. Cagnone, JS, Vermiere, B, and Nadarajah, S, A p-adaptive LCP formulation for the

compressible Navier-Stokes equations, Journal of Computational Physics (2012), doi:

http://dx.doi.org/10.1016/ j.jcp.2012.08.053.

• A new error-norm oriented adjoint-based mesh adaptation.

1. Cagnone, JS and Nadarajah, S, An error-norm oriented adaptation procedure for the

discontinuous Galerkin method
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Huynh and ZJ Wang’s CPR formulation).
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• A new error-norm oriented adjoint-based mesh adaptation.
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Error-norm adjoint problem (J-S. Cagnone)

Primal flow problem
∇ · F(u) = r(u) = 0 in Ω

Cost-function

J (u) =
1

2

∫
Ω

(u− ũ)2 dΩ

Incorporate PDE constraint into Lagrangian

L(u, ψ) =
1

2

∫
Ω

(u− ũ)2 dΩ +

∫
Ω

ψT r(u) dΩ

Enforce stationary w.r.t. δu

δL =

∫
Ω

(u− ũ) δu dΩ +

∫
Ω

ψT r′δu dΩ = 0
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Error-norm adjoint problem (J-S. Cagnone)

Replace r(u) = ∇ · F(u)

δL =

∫
Ω

(u− ũ) δu dΩ−
∫

Ω

∇ψT · F ′δu dΩ +

∫
∂Ω

ψTn · F ′δu ds = 0

Achieved by choosing ψ s.t.

{
(F ′)T · ∇ψ = u− ũ&in Ω

(F ′ · n)Tψ = 0&on ∂Ω

Summary

• Adjoint field equation

• Adjoint boundary condition

• Connection with L2 error-norm ũ← uh
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Error-norm adjoint problem (J-S. Cagnone)

Taylor expansion of r(u)

r(ũ) ≈��r(u)− r′(u− ũ) ≈ −r′δu.
Thus we find∫

Ω

ψT r(ũ) dΩ ≈ −
∫

Ω

ψT r′[u]δu dΩ (from Taylor exp.)

=

∫
Ω

(u− ũ)δu dΩ (from stationarity)

=

∫
Ω

(u− ũ)2 dΩ

= ‖u− ũ‖2Ω

Summary

• Inner product is an error-norm estimate

• Adjoint variables quantify sensitivity to residual perturbations

• Element-wise indicator ηk ≡
∫

Ωk
ψTk r(uh,k) dΩ
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Full algorithm (J-S. Cagnone)

1 Solve flow

rh(uh) = 0

2 Solve linear error eqns

r′(u− uh) = −r(uh)

3 Solve adjoint

{
(F ′)T · ∇ψ = u− uh in Ω

(F ′ · n)Tψ = 0 on ∂Ω

4 Evaluate error indicator ηk + Adapt mesh

In practice, r(u) is approximated by a p-refined discretization
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Steady 1D linear advection (J-S. Cagnone)

∂u

∂x
= f(x) x ∈ [−1; 1]
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Summary

• Error magnitude ! = Accurate indicator
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Adjoint results (J-S. Cagnone)
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Summary

• Adjoint identifies prime contribution to ‖u− uh‖Ω
• Adequate refinement indicator

Siva Nadarajah Next Generation of Algorithms for Aerodynamic Design Optimization: Current Status and Future Challengers



M∞ = 2 Prandtl-Meyer expansion fan, β = 15
o

(a) Mach number
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(b) Outflow profile

Compare goal/norm-oriented adjoints

• J1 =
∫

Γ+ p(u)ds

• J2 =
∫

Γ+ (u− uh)2ds



Adaptively refined meshes
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(c) Pressure integral adjoint
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(d) Outflow error-norm adjoint



First adjoint component

(e) Pressure integral adjoint (f) Outflow error-norm adjoint
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Uniform refinement
Integrated pressure adjoint
Surface norm adjoint

(g) Pressure integral error
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(h) Solution error

Conclusion

• Each adjoint is optimal for its respective cost function

• Error-norm adjoint is useful to minimize actual solution error



M∞ = 1.5 Supersonic diamond airfoil
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• J1 =
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∫
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(u− uh)2dΩ



(c) Pressure integral adjoint (d) Surface norm adjoint



Current Status of Aerodynamic Design Optimization
Next Generation of Algorithms

Error-Norm Oriented Adaptation for High-Order Methods
Conclusion

Current Status of Goal-Oriented Mesh Adaptation
Error-norm adjoint problem
Results: Linear advection
Results: Prandtl-Meyer expansion
Results: Supersonic diamond airfoil

10
4

10
5

10
−2

10
−1

L
2
−

e
rr

o
r 

n
o
rm

DOF

Surface norm error

Summary

• Each adjoint is optimal for its respective cost function

• Norm-oriented predicts more accurate pressure signature
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Contributions

• Novel norm-oriented adjoint method

• Verification on supersonic flow problems

Conclusion

• Adjoint enables identification of error sources

• Correctly accounts for physics & error transport

• Useful of accurate signal capture

Future work

• Algorithmic cost reductions

• hp-Adaptation

• Viscous problems
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