Next Generation of Algorithms for Aerodynamic Design Optimization: Current Status and Future Challengers

Siva Nadarajah

Department of Mechanical Engineering McGill University

🐯 McGill

Siva Nadarajah Next Generation of Algorithms for Aerodynamic Design Optimization: Curr

Table of contents

- 1. Current Status of Aerodynamic Design Optimization
 - Aerodynamic Design Optimization using Drag Decomposition Aerodynamic Shape Optimization Through Drag Decomposition Sensitivity-Based Sequential Sampling for Surrogate Models Design for Predominantly Laminar Flow Wings Constrained Optimization of Multistage Turbomachinery Design Optimization to Alleviate Gust Response and Flutter
- 2. Next Generation of Algorithms
- Error-Norm Oriented Adaptation for High-Order Methods Current Status of Goal-Oriented Mesh Adaptation Error-norm adjoint problem Results: Linear advection Results: Prandtl-Meyer expansion Results: Supersonic diamond airfoil
- 4. Conclusion

Aerodynamic Shape Optimization Through Drag Decomposition

Sensitivity-Based Sequential Sampling for Surrogate Models Design for Predominantly Laminar Flow Wings Constrained Optimization of Multistage Turbomachinery Design Optimization to Alleviate Gust Response and Flutter

Adjoint-Based Aerodynamic Shape Optimization Using the Drag Decomposition Method (François Bisson)

Key Features

- Phenological breakdown of drag
- Reduce mesh dependancy
- Understand the sensitivity of the design variable for each drag component for the full flight envelope
- Potential application to non-planar wings design

DPW-W1 at M = 0.76 and $C_L = 0.500$ for fine grid (inviscid)

(Courtesy [Kusunose et al., 2002])

$$D = \frac{1}{\gamma M_{\infty}^2} \iint_{SWake} \left(\frac{\Delta s}{R}\right) \rho \mathbf{u} \cdot \mathbf{n} \, dS$$

$$+\frac{\rho_{\infty}}{2} \iint_{S_{Wake}} (\psi\zeta) dS + \mathcal{O}(\Delta^2)$$

- 1st term related to entropy generation processes (shock waves and viscous/artificial dissipations)
- 2^{nd} term is the Maskell's induced drag ζ x-vorticity & ψ stream function $(\nabla^2 \psi = -\zeta)$

Aerodynamic Shape Optimization Through Drag Decomposition

Sensitivity-Based Sequential Sampling for Surrogate Models Design for Predominantly Laminar Flow Wings Constrained Optimization of Multistage Turbomachinery Design Optimization to Alleviate Gust Response and Flutter

Induced Drag Minimization - DPW-W1 Wing (François Bisson)

Pressure distribution for DPW-W1 wing induced drag minimization

Siva Nadarajah

Aerodynamic Shape Optimization Through Drag Decomposition Sensitivity-Based Sequential Sampling for Surrogate Models Design for Predominantly Laminar Flow Wings Constrained Optimization of Multistage Turbomachinery Design Optimization to Alleviate Gust Response and Flutter

Sensitivity-Based Sequential Sampling for Surrogate Models (Arthur Paul-Dubois-Taine)

Motivation

- Aircraft design involves a large number of parameters.
- High fidelity CFD results remain expensive at a conceptual design stage.
- Surrogate models \rightarrow use existing flow solutions to approximate continuous response surface

Question: what criteria do we use to decide on new snapshot locations?

Existing error criteria:

- Mean Square Error (MSE) estimate built in Kriging
- Cross Validation (CV)
 - More accurate than MSE
 - Computationally expensive
 - ⇒ Objective: find low cost alternative to CV

New approach: Sensivity analysis (S)

- Uses the mathematical form of Kriging model
- Incorporates gradient information in the sampling process

Sensitivity-Based Sequential Sampling for Surrogate Models

Sensitivity-Based Sequential Sampling for Surrogate Models (Arthur

Paul-Dubois-Taine)

Angle of Attack (o)

Pressure distribution for DPW-W1 at various camber, thickness, and α

Three parameters: Camber, Thickness ratio \rightarrow and Angle of Attack α

Camber [in %]

 $M_{\infty} = .81$, Camber Location = 40%.

Siva Nadarajah Next Generation of Algorithms for Aerodynamic Design Optimization: Curr Current Status of Aerodynamic Design Optimization Error-Norm Oriented Adaptation for High-Order Methods Conclusion Aerodynamic Shape Optimization Through Drag Decomposition Sensitivity-Based Sequential Sampling for Surrogate Models Design of Predominantly Laminar Flow Wings Constrained Optimization of Multistage Turbomachinery Design Optimization to Alleviate Gust Resonse and Flutter

Aerodynamic Optimization of Natural Laminar Flow (NLF) Airfoils

NLF(1)-0416: Minimizing total drag at constant lift, Ma=0.1, Re =2.0 million

Adjoint of Intermittency Factor

Shape modifications

Pressure distribution

- Improvements to $\gamma \operatorname{Re}_{\theta}$ model:
 - Khayatzadeh, P and Nadarajah, S, "Laminar-Turbulent Flow Simulation for Wind Turbine Profiles Using the γ-Re_θ Transition Model", Wind Energy (2013), (In-press)
- Developed Adjoint counterpart for $\gamma \operatorname{Re}_{\theta}$ model.
 - Khayatzadeh, P and Nadarajah, S, "Aerodynamic Shape Optimization of Natural Laminar Flow (NLF) Airfoils", 50th AIAA Aerospace Sciences Meeting (2011)

Aerodynamic Shape Optimization Through Drag Decomposition Sensitivity-Based Sequential Sampling for Surrogate Models Design for Predominantly Laminar Flow Wings Constrained Optimization of Multistage Turbomachinery Design Optimization to Alleviate Gust Response and Flutter

Constrained Aero Optimization for Multistage Turbomachinery (Benjamin Walther)

2.5-stage transonic compressor. Total pressure ratio: $\pi = 3.0$

 M_{rel} , baseline design

First adjoint variable $\psi_1 - \text{contours}$

Walther, B and Nadarajah, S, Constrained Adjoint-Based Aerodynamic Shape Optimization of a Transonic Compressor Stage, *ASME Journal of Turbomachinery* April, 2013.

Walther, B and Nadarajah, S, Constrained Adjoint-Based Aerodynamic Shape Optimization in a Multistage Turbomachinery Environment, AIAA ASM 2012 January, 2012.

Contributions

- 1. Effect of constraint violation on the performance of the compressor stage.
- 2. High-lift airfoil design \rightarrow reduced number of blades/stages
- Unsteady multistage optimization → rotor-stator interactions using Non-Linear Frequency Domain schemes.

Aerodynamic Shape Optimization Through Drag Decomposition Sensitivity-Based Sequential Sampling for Surrogate Models Design for Predominantly Laminar Flow Wings Constrained Optimization of Multistage Turbomachinery Design Optimization to Alleviate Gust Response and Flutter

Design Optimization to Alleviate Gust Response and Flutter (Ali Mosahebi)

Fast Implicit Adaptive Time Spectral Schemes

$$\begin{bmatrix} \frac{1}{\Delta t^*} + \frac{\partial f}{\partial x} \end{bmatrix} (x^{n+1,s+1,g+1} - x^{n+1,s+1,g}) = \\ - \left\{ \frac{x^{n+1,s+1,g} - x^n}{\Delta t^*} + f^{n+1,s} + \frac{\partial f}{\partial X} \cdot (X^{n+1,s+1,g} - X^{n+1,s}) \right\}$$

Kachra, F and Nadarajah, S, Aeroelastic Solutions Using the Non-Linear Frequency Domain Method, AIAA Journal, 46(9), September 2008. Mosahebi, A and Nadarajah, S, "An Adaptive NonLinear Frequency Domain Method for Viscous Flows", Computers and Fluids, Elsevier (In Press)

Next-Generation of Algorithms for Aerodynamic Design Optimization

Future

- Potential increase in computing power. Greater parallelism.
- High-order methods.
- Novel approaches to explore the design space. (Multimodality)
- Evaluate sensitivity of design variables on aerodynamic performance for off-design certification cases and include it within the design loop.
- Higher geometric detail during the optimization.
- Quantify uncertainty.
- Evaluating the Hessian.

Current Status of Goal-Oriented Mesh Adaptation Error-norm adjoint problem Results: Linear advection Results: Prandtl-Mevre expansion

Current Status of Goal-Oriented Mesh Adaptation (J-S. Cagnone)

Adaptation based on Lift

Current State-of-the-Art

- Wide variety of phenomenon / scale lengths
- Reliable CFD requires a-priori knowledge of the flow
- Meshing best practices may be insufficient in some cases...

Current Status of Goal-Oriented Mesh Adaptation Error-norm adjoint problem Results: Linear advection Results: Prandtl-Meyer expansion Results: Supersonic diamond airfoil

Current Status of Goal-Oriented Mesh Adaptation (J-S. Cagnone)

- Adjoint provides sensitivity of scalar quantity of interest
 - Formally $\mathcal{J}(\mathbf{u}) = \int_{\Gamma} p(\mathbf{u}) ds$
 - In practice, interested in C_l , C_d or C_m
- · Can be used to guide mesh refinement
- Theory well understood
 - FEM: Becker & Rannacher (1996,1998)
 - FV: Venditti & Darmofal (2002,2003)
 - DG: Houston & Hartmann (2001,2002) Fidkowski & Darmofal (2007)

Some limitations

- What if there is no obvious output?
- What if interested in actual 3D flow field?
- What if interested in a pressure distribution?

Current Status of Goal-Oriented Mesh Adaptation Error-norm adjoint problem Results: Linear advection Results: Prandtl-Meyer expansion

Current Status of Goal-Oriented Mesh Adaptation (J-S. Cagnone)

Adaptation based on Lift

Adaptation based on Drag

• Current approaches ask, "What is the error in the integrated functional?"

Current Status of Goal-Oriented Mesh Adaptation Error-norm adjoint problem Results: Linear advection Results: Prandtl-Meyer expansion

Current Status of Goal-Oriented Mesh Adaptation (J-S. Cagnone)

Adaptation based on Lift

Adaptation based on Drag

- Current approaches ask, "What is the error in the integrated functional?"
- Perhaps we should ask, "What is the integral of the error on the surface or volume?"

Current Status of Goal-Oriented Mesh Adaptation Error-norm adjoint problem Results: Linear advection Results: Prandtl-Meyer expansion Results: Supersonic diamond airfoil

Current Status of Goal-Oriented Mesh Adaptation (J-S. Cagnone)

Our Contribution

- Developed a new *p*-adaptive differential-form of the DG Scheme (Based on HT Huynh and ZJ Wang's CPR formulation).
 - Cagnone, JS and Nadarajah, S, A Stable Interface Element Scheme for the p-Adaptive Lifting Collocation Penalty Formulation, *Journal of Computational Physics*, 231(4), February, 2012.
 - Cagnone, JS, Vermiere, B, and Nadarajah, S, A p-adaptive LCP formulation for the compressible Navier-Stokes equations, *Journal of Computational Physics* (2012), doi: http://dx.doi.org/10.1016/ j.jcp.2012.08.053.

Current Status of Goal-Oriented Mesh Adaptation Error-norm adjoint problem Results: Linear advection Results: Prandtl-Meyer expansion Results: Supersonic diamond airfoil

Current Status of Goal-Oriented Mesh Adaptation (J-S. Cagnone)

Our Contribution

- Developed a new *p*-adaptive differential-form of the DG Scheme (Based on HT Huynh and ZJ Wang's CPR formulation).
 - 1. Cagnone, JS and Nadarajah, S, A Stable Interface Element Scheme for the p-Adaptive Lifting Collocation Penalty Formulation, *Journal of Computational Physics*, 231(4), February, 2012.
 - Cagnone, JS, Vermiere, B, and Nadarajah, S, A p-adaptive LCP formulation for the compressible Navier-Stokes equations, *Journal of Computational Physics* (2012), doi: http://dx.doi.org/10.1016/ j.jcp.2012.08.053.
- A new error-norm oriented adjoint-based mesh adaptation.
 - Cagnone, JS and Nadarajah, S, An error-norm oriented adaptation procedure for the discontinuous Galerkin method

Current Status of Goal-Oriented Mesh Adaptation **Error-norm adjoint problem** Results: Linear advection Results: Prandtl-Meyer expansion Results: Supersonic diamond airfoil

Error-norm adjoint problem (J-S. Cagnone)

Primal flow problem

 $\nabla\cdot \mathcal{F}(\mathbf{u}) = \mathbf{r}(\mathbf{u}) = 0 \quad \text{in } \Omega$

Cost-function

$$\mathcal{J}(\mathbf{u}) = \frac{1}{2} \int_{\Omega} \left(\mathbf{u} - \tilde{\mathbf{u}} \right)^2 d\Omega$$

Incorporate PDE constraint into Lagrangian

$$\mathcal{L}(\mathbf{u},\psi) = \frac{1}{2} \int_{\Omega} \left(\mathbf{u} - \tilde{\mathbf{u}}\right)^2 d\Omega + \int_{\Omega} \psi^T \mathbf{r}(\mathbf{u}) d\Omega$$

Enforce stationary w.r.t. $\delta \mathbf{u}$

$$\delta \mathcal{L} = \int_{\Omega} \left(\mathbf{u} - \tilde{\mathbf{u}} \right) \delta \mathbf{u} \, d\Omega + \int_{\Omega} \psi^{T} \mathbf{r}' \delta \mathbf{u} \, d\Omega = 0$$

< 回 > < 三 > < 三 >

Current Status of Goal-Oriented Mesh Adaptation **Error-norm adjoint problem** Results: Linear advection Results: Prandtl-Meyer expansion Results: Supersonic diamond airfoil

Error-norm adjoint problem (J-S. Cagnone)

Replace $\mathbf{r}(\mathbf{u}) = \nabla \cdot \mathcal{F}(\mathbf{u})$

$$\delta \mathcal{L} = \int_{\Omega} \left(\mathbf{u} - \tilde{\mathbf{u}} \right) \delta \mathbf{u} \, d\Omega - \int_{\Omega} \nabla \psi^T \cdot \mathcal{F}' \delta \mathbf{u} \, d\Omega + \int_{\partial \Omega} \psi^T \mathbf{n} \cdot \mathcal{F}' \delta \mathbf{u} \, ds = 0$$

Achieved by choosing ψ s.t.

$$\begin{cases} (\mathcal{F}')^T \cdot \nabla \psi = \mathbf{u} - \tilde{\mathbf{u}} \& \text{in } \Omega \\ (\mathcal{F}' \cdot \mathbf{n})^T \psi = 0 \& \text{on } \partial \Omega \end{cases}$$

Summary

- Adjoint field equation
- Adjoint boundary condition
- Connection with L_2 error-norm $\mathbf{\tilde{u}} \leftarrow \mathbf{u}_h$

< 17 >

∃ → < ∃</p>

Current Status of Goal-Oriented Mesh Adaptation **Error-norm adjoint problem** Results: Linear advection Results: Prandtl-Meyer expansion Results: Supersonic diamond airfoil

Error-norm adjoint problem (J-S. Cagnone)

Taylor expansion of $\mathbf{r}(\mathbf{u})$

$$\mathbf{r}(\mathbf{\tilde{u}}) \approx \mathbf{r}(\mathbf{u}) - \mathbf{r}'(\mathbf{u} - \mathbf{\tilde{u}}) \approx -\mathbf{r}' \delta \mathbf{u}.$$

Thus we find

$$\begin{split} \int_{\Omega} \psi^{T} \mathbf{r}(\tilde{\mathbf{u}}) \, d\Omega &\approx -\int_{\Omega} \psi^{T} \mathbf{r}'[\mathbf{u}] \delta \mathbf{u} \, d\Omega \quad \text{(from Taylor exp.)} \\ &= \int_{\Omega} (\mathbf{u} - \tilde{\mathbf{u}}) \delta \mathbf{u} \, d\Omega \quad \text{(from stationarity)} \\ &= \int_{\Omega} (\mathbf{u} - \tilde{\mathbf{u}})^{2} \, d\Omega \\ &= \|\mathbf{u} - \tilde{\mathbf{u}}\|_{\Omega}^{2} \end{split}$$

Summary

- Inner product is an error-norm estimate
- · Adjoint variables quantify sensitivity to residual perturbations
- Element-wise indicator $\eta_k \equiv \int_{\Omega^k} \psi_k^T \mathbf{r}(\mathbf{u}_{h,k}) \, d\Omega$

Current Status of Goal-Oriented Mesh Adaptation **Error-norm adjoint problem** Results: Linear advection Results: Prandtl-Meyer expansion Results: Supersonic diamond airfoil

Full algorithm (J-S. Cagnone)

Solve flow

$$\mathbf{r}_h(\mathbf{u}_h)=0$$

2 Solve linear error eqns

$$\mathbf{r}'(\mathbf{u}-\mathbf{u}_h)=-\mathbf{r}(\mathbf{u}_h)$$

Solve adjoint

$$\begin{cases} (\mathcal{F}')^T \cdot \nabla \psi = \mathbf{u} - \mathbf{u}_h & \text{in } \Omega \\ (\mathcal{F}' \cdot \mathbf{n})^T \psi = 0 & \text{on } \partial \Omega \end{cases}$$

4 Evaluate error indicator η_k + Adapt mesh

In practice, $\mathbf{r}(\mathbf{u})$ is approximated by a *p*-refined discretization

< 6 >

-

Current Status of Goal-Oriented Mesh Adaptation Error-norm adjoint problem Results: Linear advection Results: Prandtl-Meyer expansion Results: Supersonic diamond airfoil

Steady 1D linear advection (J-S. Cagnone)

Summary

Siva Nadarajah

Next Generation of Algorithms for Aerodynamic Design Optimization: Curre

Current Status of Goal-Oriented Mesh Adaptation Error-norm adjoint problem Results: Linear advection Results: Prandtl-Meyer expansion Results: Supersonic diamond airfoil

Adjoint results (J-S. Cagnone)

Summary

- Adjoint identifies prime contribution to $\|\mathbf{u} \mathbf{u}_h\|_{\Omega}$
- Adequate refinement indicator

$M_{\infty} = 2$ Prandtl-Meyer expansion fan, $\beta = 15^o$

Compare goal/norm-oriented adjoints

•
$$\mathcal{J}_1 = \int_{\Gamma^+} p(\mathbf{u}) ds$$

•
$$\mathcal{J}_2 = \int_{\Gamma^+} (\mathbf{u} - \mathbf{u}_h)^2 ds$$

Adaptively refined meshes

(c) Pressure integral adjoint

(d) Outflow error-norm adjoint

First adjoint component

(e) Pressure integral adjoint

(f) Outflow error-norm adjoint

Conclusion

- Each adjoint is optimal for its respective cost function
- Error-norm adjoint is useful to minimize actual solution error

$M_{\infty} = 1.5$ Supersonic diamond airfoil

Compare goal/norm-oriented adjoints

•
$$\mathcal{J}_1 = \int_S p(\mathbf{u}) ds$$

•
$$\mathcal{J}_2 = \int_S (\mathbf{u} - \mathbf{u}_h)^2 d\Omega$$

Current Status of Goal-Oriented Mesh Adaptation Error-norm adjoint problem Results: Linear advection Results: Prandtl-Meyer expansion Results: Supersonic diamond airfoil

Surface norm error

Summary

- Each adjoint is optimal for its respective cost function
- Norm-oriented predicts more accurate pressure signature

A 1

Contributions

- Novel norm-oriented adjoint method
- Verification on supersonic flow problems

Conclusion

- Adjoint enables identification of error sources
- Correctly accounts for physics & error transport
- Useful of accurate signal capture

Future work

- Algorithmic cost reductions
- *hp*-Adaptation
- Viscous problems

Acknowledgements

• Graduate Students:

- Benjamin Walther (PhD)
- Brian Vermeire (PhD)
- Peyman Khayatzadeh (PhD)
- Jean-Sebastien Cagnone (PhD)
- Mostafa Najafiyazdi (PhD)

- François Bisson (Masters)
- Jeremy Schembri (Masters)
- Arthur Paul-Dubois-Taine (Honors)
- Dylan Jude (Honors)
- Funding Sources: NSERC Discovery, NSERC Strategic, FQRNT Team Grants, NSERC Collaborative and Development, NSERC Engage, Bombardier Aerospace, Pratt&Whitney, Hydro Quebec.